Я вот еще что добавлю к нашим размышлениям. $x=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}+\frac{-p}{3\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}}$ не сводится к утверждению "корень — это такое число a, что a3 – 3a + 1 = 0". В этой формуле таится еще утверждение "я могу найти численное значение этого корня с помощью шести арифметических действий". Это и есть та семантическая добавка, которую великие алгебраисты назвали в свое время разрешимостью в радикалах. Ее можно сделать для уравнений степени 1<=n<=4, и нельзя сделать для уравнений степени n>4, сколько не "шифруй" ответ. А вот возможность однозначно расписать все корни для линейного и квадратного, и невозможность --- для кубического и квартического --- это синтаксическое явление.
no subject
Date: 2013-08-11 09:08 pm (UTC)$x=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}+\frac{-p}{3\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}}$ не сводится к утверждению "корень — это такое число a, что a3 – 3a + 1 = 0". В этой формуле таится еще утверждение "я могу найти численное значение этого корня с помощью шести арифметических действий". Это и есть та семантическая добавка, которую великие алгебраисты назвали в свое время разрешимостью в радикалах. Ее можно сделать для уравнений степени 1<=n<=4, и нельзя сделать для уравнений степени n>4, сколько не "шифруй" ответ.
А вот возможность однозначно расписать все корни для линейного и квадратного, и невозможность --- для кубического и квартического --- это синтаксическое явление.